
 Springer-Verlag

Re-use of Interaction Protocols
for Agent-based Control Applications

Stefan Bussmann1, Nicholas R. Jennings2, and Michael Wooldridge3

1DaimlerChrysler AG, Research Information and Communication
Alt-Moabit 96A, 10559 Berlin, Germany.

Stefan.Bussmann@daimlerchrysler.com
2Dept. of Electronics and Computer Science, University of Southampton

Southampton SO17 1BJ, United Kingdom.
nrj@ecs.soton.ac.uk

3Dept. of Computer Science, University of Liverpool
Liverpool L69 7ZF, United Kingdom.
M.J.Wooldridge@csc.liv.ac.uk

Abstract. This paper presents a design method for re-using existing interaction
protocols in agent-based control applications. In particular, this paper presents a
general set of criteria for classifying interaction situations and matching them
with existing interaction protocols that are able to resolve the interaction
situations. This classification scheme is based solely on criteria derived from
the specification of an interaction situation and thus enables a designer to select
a suitable interaction protocol for these interaction problems without going
through all the interaction protocols available. This design method completes
the DACS methodology for agent-oriented analysis and design of control
systems.

1 Introduction

The increasing industrial exploitation of agent technology in recent years has
highlighted the importance of having agent-oriented software engineering
frameworks. Put simply, they are necessary if agent technology is to be widely
adopted. To provide such a framework, several agent-oriented methodologies and
software engineering techniques have been developed (see e.g. [3,19]). To date,
however, most agent-oriented design methodologies proposed have focused on
developing an agent-based system from scratch. The methodologies either ignore the
large body of agent-oriented techniques already available or leave it to the designer to
identify and incorporate those techniques that may be useful in developing the
envisioned agent-based system. Both of these situations, however, are undesirable. As
with other areas of software [5,15], re-use could significantly improve matters.

To this end, this paper presents a design method for re-using existing interaction
protocols. This design method addresses the first and most crucial step in re-use,
namely the identification of those interaction protocols that could possibly be used in
a design. To perform this identification step, the designer must have a mechanism that
enables him to identify a suitable interaction protocol by only specifying his

interaction problem. In particular this needs to be achieved without going explicitly
through all the existing interaction techniques and deciding for each one whether it is
useful or not. Against this background, this paper presents a classification scheme
which is based on criteria solely taken from the specification of an interaction
problem and which, as a result, pinpoints to those interaction protocols that could
possibly be used in the design. This work is couched in terms of the DACS (design of
agent-based control systems) methodology we are developing for analysing and
designing agent-based control systems [2].

The remainder of the paper is organised as follows. Section 2 recounts the basic
concepts used by the DACS design method. Section 3 presents the main contribution
of this paper – the design method for selecting interaction protocols. Section 4
discusses related work. Finally, the last section concludes with an evaluation of the
method presented.

2 Overview of DACS Design Methodology

The goal of DACS is to enable an engineer with only limited training in agent
technology and no prior experience in agent applications to design an agent-based
control system. The engineer is given a description of the control problem to be
solved, and then runs through the following three steps in order to design the agent-
based system.

1. Analysis of decision making – The control decisions that are necessary to operate
the target process are identified and analysed.

2. Identification of agents – The necessary agents of the control system, their decision
responsibilities, and their interaction requirements are identified.

3. Selection of interaction protocols – A suitable interaction protocol is chosen for
each situation in which the agents need to interact.

The first two steps have already been described in [2]. The third step is the
contribution of this paper. The rest of this section describes those concepts developed
in the previous work that are necessary to understand the third step.

The method for selecting the interaction protocols builds upon two concepts used
to analyse the necessary decision making in step 1: decision tasks and decision
dependencies. A decision task specifies a situation at the controlled process in which
the controller must make a decision about which action to perform in this situation. A
decision task is defined by a trigger indicating that the situation has occurred; a
decision space listing the possible alternatives the controller has in this situation; and
a set of (local) constraints and preferences on the decision space determining which
actions are eligible and which are preferred.

Since control decisions can have far-reaching effects, the control decisions may be
dependent on each other for finding the best control actions that create an optimal
system performance. These dependencies are identified and characterised by
specifying non-local constraints and preferences, i.e., constraints and preferences that
involve several decision tasks. Whenever a dependency exists between decision tasks
belonging to different agents, these agents need to interact in order to determine the
decision alternative that not only satisfies the local, but also the non-local constraints

and preferences. To select an existing interaction protocol that is able to perform this
interaction is the goal of the design method presented in this paper.

3 Selecting Interaction Protocols

To re-use existing interaction protocols, there must be a design method that enables
the designer to select a suitable protocol given the description of a decision
dependency between decision tasks. Such a design method must provide a set of
criteria such that the interaction protocol which matches a dependency best –
according to these criteria – is also the best interaction protocol to resolve the
dependency. Given such a set of criteria, the designer only needs to classify a
dependency according to these criteria and then search through a library of existing
interaction techniques to find the interaction protocol that matches the classification
best (see figure 1). In case, this library is computer-based, the search process may
even be done automatically.

dependency

classification

protocol P1

protocol P2
...

protocol Pn

library of existing
interaction techniques

adapted
interaction protocol

match

classify
specify and
customise

resolves

Fig. 1. The process for selecting interaction protocols.

The proposed process for selecting interaction protocols is a heuristic classification
[4] because the selection mechanism is based on an abstract description of the
interaction situation and the protocols. Such an abstraction is necessary if there is no
direct matching between problem and solution (see [4] for a discussion). This direct
link does not exist because a dependency may be solved by several interaction
protocols.

To select an interaction protocol for a given dependency, the designer must
consequently perform three steps. The first one is to classify the dependency
according to a pre-defined set of criteria (called the classification scheme in what
follows). The second step of the selection process is to match the classification of the
dependency against a library of existing interaction techniques. A matching
procedure specifies how the matching is performed and how, based on the results of
this matching, the interaction protocol best suited to resolve the dependency is
identified. To make such a matching possible, the existing interaction protocols must
be classified according to the same criteria as the dependency. This process – which
needs to be done only once for each interaction protocol – will be called protocol
characterisation in the following. Once a suitable interaction protocol has been
identified, the last step of the selection process is to specify it in terms of the

application and, if necessary, to adapt it to the specific requirements of the
dependency situation. This final step will be referred to as the protocol customisation.

The following subsections describe each aspect of the selection process in detail.
The first subsection develops the classification scheme for dependencies. Subsection
3.2 shows how existing interaction protocols must be characterised in order to match
the classification scheme and gives two examples of such characterisations.
Subsection 3.3 then presents the procedure for matching dependencies to existing
protocols, and explains to what extent a chosen protocol can be customised to fit an
actual dependency situation in a given application.

3.1 Classification Scheme

The classification scheme is the core mechanism for re-using interaction protocols. To
enable efficient re-use, this scheme should classify dependencies such that the
interaction protocol which matches the classification of a dependency best is also the
best interaction protocol to resolve the dependency. The classification scheme must
consequently consist of classification criteria that put dependencies into different
classes if they require different (kinds of) interaction protocols. To identify such a set
of criteria, it is necessary to look at the requirements a dependency may impose on the
interaction process and collect those aspects which differentiate dependencies most
with respect to the required interaction process. This is the objective of this
subsection.

A dependency consists of a set of decision tasks and a set of non-local constraints
and preferences these decision tasks must fulfil (see section 2). Each decision task
specifies a set of possible start situations in which the decision problem arises; and
the decision tasks in combination with the non-local constraints and preferences
specify what goal state must be achieved in the end. Any interaction protocol
supposed to resolve the dependency must be able to reach the goal state from any
possible start situation. Start situations and goal state of a dependency thus delineate
the functionality of the required interaction protocol. It must be applicable to any start
situation and must be able to achieve all aspects of the goal state. Both, start situations
and goal state, are therefore analysed below in order to identify classification criteria
distinguishing interaction protocols with respect to their applicability.

Start Situation. A start situation of a dependency is basically defined by two aspects:
the decision tasks that share a dependency, and the constraints and preferences that
restrict their decision making. For the selection of an interaction protocol, both
aspects must be classified in application-independent terms. (Application-dependent
criteria would limit the universality of the re-use mechanism and are also not
appropriate because most interaction protocols are defined in general terms.)

Decision Tasks Involved in the Dependency. The first relevant criterion for the
selection of a suitable interaction protocol is certainly the number of decision tasks
that need to be co-ordinated. Is there, for instance, a small and fixed number of
decision tasks that need to interact, or does the set of decision tasks change over time?
Since dependent decision tasks only need to be co-ordinated if they belong to

different agents, the first relevant criterion for selecting interaction protocols is
therefore the number of agents involved in the dependency.

Criterion #1: Number of agents involved
How many agents are involved in the dependency right from the start? May
other agents join later?

The possible answers to the above questions are classified according to the
requirements they impose on the required interaction process.

fix The number of agents involved in the dependency is fixed at the
beginning of the interaction.

changing The number of agents involved may change during the
interaction, i.e., agents may join the interaction process after it
has been started. Agents may join later, for example, because
they have been introduced to the control system after the
beginning of the interaction.

The second class – changing – imposes a stronger requirement on the interaction
process than the first class. When the number of agents involved is fixed, the
interaction protocol chosen must be able to deal with an arbitrary, but fix number of
agents. In the special case that the number of agents involved is fixed and already
known at design time, the designer may even choose an interaction protocol that is
only able to deal with the number of agents indicated. Some interaction protocols, for
instance, are only able to co-ordinate two agents. In case the number of agents is not
fixed, but changing, the protocol must additionally be able to integrate new agents
into the interaction process after it has been initiated.

Relation of Constraints and Preferences. The other important aspect of the start
situation is how the decision tasks involved in the dependency are related to each
other. Each agent has its local decision tasks, but is not able to execute them locally
because of the non-local constraints and preferences that restrict the local decision
making. As a consequence, the agents need to interact. The nature of the restrictions
on the local decision making, however, have an influence on the kind of interaction
required to deal with these restrictions. Agents that have completely opposing
interests will have to interact more than agents that just want to avoid some damaging
actions. The second relevant criterion for the selection of a suitable interaction
protocol is therefore the relation of local and non-local constraints and preferences.

Criterion #2: Compatibility of constraints and preferences
How compatible are the local and non-local constraints and preferences
involved in a dependency?

The compatibility is classified according to the kinds of restrictions that create the
dependency:

only constraints There are only constraints. These constraints – by
definition – only rule out certain combinations of decision alternatives.
Any combination of decision alternatives that is not ruled out is a solution
resolving the dependency. Naturally, there may exist no solution satisfying
all constraints.

compatible preferences There exists at least one (local or non-local)
preference function on the outcome of the interaction (and possibly
additional constraints). In case of more than one preference function, there
are solutions that are to the mutual benefit of all agents, i.e., that satisfy all
preference functions.

opposing preferences There are at least two agents that have preferences
on the outcome of the interaction and these preferences are opposing, i.e.,
there is no combination of decision alternatives that maximises all local
and non-local preference functions. (Constraints may be present or not.)

Another important aspect of the constraints and preferences linking the decision tasks
is to what extent these constraints and preferences are global, i.e., encompass all
decision tasks of a dependency. By definition, the non-local constraints and
preferences involve at least two decision tasks. However, if there are more than two
agents, the non-local constraints and preferences may involve all agents and thus be
global, or only link subsets of the agents. This distinction is particularly relevant if
there are many agents. In such a case, it may be far easier to co-ordinate small subsets
of these agents than to make sure that all agents satisfy a global constraint or
maximise a global preference function. Therefore, the start situation is also classified
according to the existence of global constraints and preferences.

Criterion #3: Global constraints and preferences
In case there are more than two agents, does there exist a global constraint
or preference that involves all decision tasks?

The cases in which there are more than two agents and a global constraint or
preference exists, are indicated by global. All other cases are defined as non-local.

Goal State. To resolve a dependency, the relevant agents need to choose an action for
each decision task such that the local and non-local constraints and preferences are
satisfied in the best manner possible. The goal state of a dependency is thus specified
by a list of actions – one for each decision task. At least something about this goal
state must be unknown at the start in order to represent a decision problem. Thus it
will either be unclear which actions are to be taken by each agent or, if the decision
spaces include the null action, which agents will be taking an action at all (otherwise
the agents do not have a decision task). The interaction protocol to be selected will
have to answer whichever question is unanswered at the beginning of the interaction.
The first question – which action should be executed – however will be unanswered
in most cases, and will therefore hardly distinguish interaction situations. The second
question – which agent should commit to an action – on the other hand, may or may
not be clear at the beginning. The second question is thus not common to all
interaction situations and may consequently be used to distinguish dependencies with
respect to the requirements they impose on the interaction protocol. This will be done
below (see role variability).

The second important aspect of a goal state is how the actual decisions made relate
to each other. Not necessarily every decision will equally depend on every other
decision involved in the dependency. Consequently, at the end of the interaction not
every agent will have to commit itself in front of everybody else to the decisions

made (even if they are all dependent on each other). Maybe some agents form a
subgroup that is independent in their execution of the rest of the agents involved in
the dependency. The number and size of the required joint commitments, however, is
relevant to the selection of a suitable interaction protocol. Bilateral joint commitments
are easier to achieve than a joint commitment encompassing all agents. The required
joint commitments are therefore also analysed below (see joint commitments).

The criteria for classifying the joint commitments are presented first because any
interaction situation requires joint commitments to be made.

Joint Commitments. In the context of this work, a set of commitments is called a joint
commitment if the failure to fulfil one of the commitments jeopardises the success of
the other commitments. That is, the set of commitments only makes sense if all
commitments are fulfilled. If one agent de-commits, all other agents should de-
commit, too.

Formally, joint commitments are represented by subsets of the agents involved in a
dependency. If one agent of such a subset de-commits, all other agents in this subset
should de-commit, too. The joint commitments required by a dependency may thus
have quite diverse structures – namely any subset of the power set of the agents is
theoretically a possible set of joint commitments. However, to make a comparison of
joint commitments feasible and efficient, the classification of the required joint
commitments is reduced to two criteria: the number of (independent) joint
commitments, and the size of the commitments.

Criterion #4: Number of joint commitments
Is the number of joint commitments required in the goal state already
known at the beginning of the interaction, or must it be determined by the
interaction protocol?

The possible answers to the above question are indicated as follows:

fix The number of required joint commitments is known at the
beginning of the interaction.

variable The number of required joint commitments must be determined
by the interaction protocol.

Criterion #5: Size of joint commitments
How many agents are involved in a joint commitment? Do all joint
commitments have the same size?

The possible answers to the above question are indicated as follows:

fix All joint commitments have the same size.
differing The joint commitments may have different size.
variable The size of the joint commitments must be determined by the

interaction protocol.

Role Variability. The goal state is described by a set of agent-action pairs, specifying
which agent is executing which action. As discussed above, it may be unclear which
of the agents available in the interaction situation will actually perform an action, and
thus will be a member of one of the agent-action pairs. To capture this potential

uncertainty, the goal state will be characterised with the help of roles [10]. A role
describes a specific behaviour without specifying which agent will actually perform
this behaviour. In this view, the goal state consists of a set of roles, each specifying an
action, and one task of the interaction protocol – apart from identifying these actions –
is to assign these roles to agents. To classify this assignment problem for a given
dependency, it is necessary to identify which roles are already assigned to agents and
which must be assigned during the interaction process.

Criterion #6: Role assignment
Is an agent role already assigned to an agent, or must the role assignment
be determined by the interaction protocol?

For each role, there are two possible answers: A role is either fix or variable. The
classification of the agent roles can therefore be summarised by stating how many
roles are variable (all others then must be fixed). Three cases are distinguished:

none None of the agent roles are variable.
subset A subset of the agent roles is variable.
all All agent roles are variable.

The variability of a role is relevant to the selection of an interaction protocol because
a variable role requires that the interaction protocol must not only choose an
appropriate action, but must also find an agent to execute it. It is also relevant how
many of the agent roles are variable because it is easier to assign some roles than all
roles. Who will perform the role assignment if all roles (including the role of
assigning the roles) is variable?

Summary. This section has identified six classification criteria that characterise
decision dependencies with respect to the interaction process they require. These
criteria define 216 possible classifications – namely the product of the possible
classifications for each criterion. Due to the diverse aspects covered, these
classifications already cover a wide range of different dependency situations. More
criteria, however, can be defined and added to the classification scheme if necessary.
How many, and in particular which criteria are necessary in order to optimally match
interaction situations with interaction protocols ultimately depends on the type of
dependencies encountered in an application and on the types of interaction protocols
existing. Our experience, however, shows that the criteria presented here provide a
sufficient basis for reducing the set of suitable interaction protocols to a small set
(which then can be assessed manually).

3.2 Characterising Interaction Protocols

The re-use mechanism proposed in this paper requires that existing interaction
protocols are characterised according to the same criteria as the interaction situations
(see beginning of this section). Once such a characterisation of the existing interaction
protocols is given (and it needs to be done only once for each protocol), the most
suitable interaction protocol can be identified by matching the classification of the
dependency against a library of existing interaction protocols.

The characterisation of an interaction protocol, though, is not simply a
classification according to the scheme presented in the previous subsection. Instead of
assigning it to a specific class of dependencies, an interaction protocol should be
assigned to all those classes which it can efficiently solve. The task of the
characterisation is therefore to analyse the interaction protocol with respect to the
classes of dependencies it could possibly address.

As a first step towards a library of existing interaction protocols, a diverse set of
protocols has already been characterised. This set includes protocols from consensus
formation, bargaining, auction theory (in particular, one-sided and continuous double
auctions), negotiation, distributed constraint satisfaction, coalition formation, and
distributed planning. Due to space limitations, only two examples of protocol
characterisations can be given in this paper. The protocols presented below were
chosen because they are characterised quite differently.

The contract net protocol. The contract net protocol (CNP) is a simple, but efficient
protocol for assigning tasks to individual nodes in a network [18]. It assumes that one
node has a task that needs to be executed and that there are several nodes that are able
to execute this task. The node with the task is called the manager and the other nodes
are (potential) contractors. The manager initiates the protocol by announcing the task
to the potential contractors, which answer with a bid. The manager compares the bids
and chooses the best bid according to its preferences. The node which has sent the
best bid then receives an award message and is said to have a contract with the
manager about the execution of the task. The other nodes may or may not receive a
reject message.

Criterion #1 – Number of agents involved: fix

The CNP involves several agents, namely one manager and at least two bidders.
The number of bidders must be fixed at the beginning of the interaction because
the manager announces the task to be contracted only once to exactly these
bidders (of course, the protocol may be changed to accommodate a changing set of
bidders).

Criterion #2 – Compatibility of preferences: compatible

The constraints and preferences of the different agents must be at least compatible.
If the preference were opposing, it would not be possible to find a mutually
acceptable compromise with the first bid.

Criterion #3 – Global constraints and preferences non-local

The CNP is not able to handle global preferences because each agent (i.e.,
manager and contractors) only take into account their local decision preferences.

Criterion #4 – Number of joint commitments: 1
Criterion #5 – Size of joint commitments: 2
Criterion #6 – Role assignment: 1/1

There is only one joint commitment in the goal state, namely that of the manager
and the contractor that wins the contract. Obviously, the size of this joint

commitment is two and it consists of only two roles. The first role, i.e., that of the
manager, is fixed and the other role variable.

The relation of agent roles and joint commitments in the CNP is schematically
exemplified in the following figure.

(contractor)
Agent A

(manager)

Agent B1

Agent Bn

joint
commitment

. . .

Fig. 2. The decision structure of the CNP.

Partial global planning. Partial global planning (PGP) was developed to co-ordinate
distributed planners for sensory interpretation, each executing its own local plan for
the interpretation of the distributed data [7]. To achieve the co-ordination of the
distributed planners efficiently, the agents abstract from their plans and exchange
these abstractions. Given the different local plan abstractions, each agent is then able
to identify common goals to which the local goals of the agents contribute. Since
these common goals may be only partially known to the agents, they are called partial
global goals. Once a partial global goal has been identified, the local plans can be
integrated into partial global plans. PGP in its original description provides two
mechanisms to perform this integration: redundant tasks are avoided, and tasks are
performed earlier if this facilitates the work of other agents. In contrast to many other
interaction protocols, PGP is therefore an on-going mechanism for global co-
ordination:

Criterion #1 – Number of agents involved: changing

Since the planning process is on-going and intertwined with the execution, agents
may join the planning process at any time.

Criterion #2 – Compatibility of preferences: compatible

PGP is designed for co-operative agents. There is no mechanism in PGP to
reconcile opposing interests.

Criterion #3 – Global constraints and preferences global

During the planning process, the agents construct (partial) global plans and try to
optimise the overall system behaviour.

Criterion #4 – Number of joint commitments: variable
Criterion #5 – Size of joint commitments: variable
Criterion #6 – Role assignment: all variable

The number of joint commitments and their size depends on the global goals, i.e.,
the dependencies, that are identified. Since the local plans may be changed when
integrated into the partial global plans, the roles of the agents may change also.

3.3 Matching and Customising Interaction Protocols

Given a library of existing interaction protocols characterised according to the
classification scheme, the designer is now able to run through the following steps in
order to select a suitable interaction protocol for a given dependency.

1. Collect all decision tasks involved in the dependency.
2. Identify all possible start situations in which this dependency may arise.
3. Perform the classification of the dependency.
4. Given a library of characterised interaction protocols, search for the interaction

protocols that best match the classification of the dependency. An interaction
protocol matches a dependency best if its classification has the most attributes in
common with the classification of the dependency.

5. For each protocol identified, verify whether it is able to reach the goal state from
all possible start situations. If this is not the case for a protocol, try to modify the
protocol accordingly (see below).

6. Choose the interaction protocol that resolves the dependency best (after the
customisation) and specify the (possibly adapted) interaction protocol (e.g., using
the specification language presented in [1]).

If all six steps of the above method are successfully completed, the designer has found
an interaction protocol that resolves the dependency and has thus solved the design
task (concerning the interaction situation). The above method, however, may fail to
identify a suitable interaction protocol for a dependency. This may have two reasons:

• It is not possible to resolve the dependency without resolving simultaneously other
dependencies the decision tasks are involved in. In such a case, the above method
has to be repeated with an enlarged scope. That is, in step one of the method all
decision tasks involved in the set of (potentially) relevant dependencies are
collected.

• It is possible to resolve the dependency, but there are no suitable interaction
protocols in the library available to the designer. In this case, a new interaction
protocol must be designed (or the identification of the control agents must be
revised in order to arrive at a different set of dependencies).

Customising Interaction Protocols. For each interaction protocol that matches the
dependency classification, it must be verified whether this protocol is able to reach
the goal state from all possible start situations. An interaction protocol may fail to do
so either because it is not applicable to one of the start situations, or because it does
not reach the desired goal state. In the latter case, the designer must either redesign
the protocol or choose a different protocol. In the former case, it may be possible –
either at design or at run time – to transform the actual start situation into one to
which the protocol can be applied. Here, two aspects are discussed.

First of all, the agents supposed to initiate the interaction protocol do not receive a
trigger, or too many agents initiate the interaction protocol. In both cases, the
interaction protocol must be preceded by a phase in which either the triggered agents
inform the agents supposed to initiate the interaction protocol, or, in the second case,
the agents clarify who should initiate the interaction process (e.g., through a voting
process [16]).

Secondly, an agent may not have sufficient knowledge to perform its role in the
decision making process. In such a case, the agents may have to gather (or compute)
information before they can engage in the actual decision making protocol. As for
decision making protocols, there are also a vast number of interaction protocols which
are able to gather information in an agent-based system [11].

3.4 Examples

This section gives two examples for matching the classification of a dependency with
a suitable interaction protocol. The example dependencies are taken from two real-
world control applications at DaimlerChrysler – the first application is already in
operation, the second is currently being prototyped.

Choosing a machine. For the first example, assume that a workpiece must choose a
machine to perform the next set of operations. Further assume that an agent is
associated with the workpiece and each machine. For choosing the next machine,
there is consequently a dependency between the workpiece agent – which wants to
choose a machine – and the machine agents – which must accept the workpiece for
processing. Finally, assume that there is only one start situation, namely the
workpiece agent is looking for a machine. The classification of this dependency is
then as follows.

Criterion #1 – Number of agents involved: fix

There is a fix number of agents, namely the workpiece agent and all machine
agents in the production system that could possibly process the workpiece.

Criterion #2 – Compatibility of preferences: compatible
Criterion #3 – Global constraints and preferences non-local

Constraints and preferences are assumed to be compatible because the workpiece
agent wants to get processed and the machine agents want to offer processing
(however, it may not be that simple in all control applications!). Furthermore,
there are no global constraints or preferences; each agent is trying to optimise its
performance.

Criterion #4 – Number of joint commitments: 1
Criterion #5 – Size of joint commitments: 2
Criterion #6 – Role assignment: 1/1

The dependency is resolved if the workpiece has identified a machine that is most
suitable for processing the workpiece and the machine has agreed to process it.
Consequently, the agents are searching for a single joint commitment between two
agents. The first role of the joint commitment, the workpiece agent, is obviously
fixed, and the second role, that of the machine, is to be determined.

The above classification matches perfectly to the contract net protocol (see section
3.2), even though there exist other protocols, such as voting or auction protocols, that
also match well with the above classification. A short analysis, however, shows that
the CNP is sufficient to resolve the dependency. There is also no need to customise

the CNP. (Due to space limitations, the last step – specifying the interaction protocol
is omitted.)

Meeting deadlines. For the second example, assume that each workpiece in a
manufacturing system must meet a deadline for its delivery to the customer.
Furthermore assume that each workpiece must run through several machines and that
it uses the interaction protocol identified in the previous example to choose the next
machine. Since the workpieces may compete for the machines when trying to meet
their deadlines, there exists a dependency between all workpieces (and all their
decision tasks to choose the next machine) in that the workpieces should resolve these
conflicts such that the average tardiness, i.e., the average deadline violation, is
minimised. This dependency is classified as follows:

Criterion #1 – Number of agents involved: changing

There is a changing set of agents since a new workpiece agent is created every
time a new workpiece enters the manufacturing system.

Criterion #2 – Compatibility of preferences: opposing
Criterion #3 – Global constraints and preferences global

The workpiece agents may run into conflicts concerning the machine usage that
cannot be resolved without one workpiece missing its deadline. The global
preference, of course, is to minimise the average tardiness.

Criterion #4 – Number of joint commitments: variable
Criterion #5 – Size of joint commitments: differing
Criterion #6 – Role assignment: some variable

Joint commitments are constantly formed as workpiece agents enter the
manufacturing system. In particular, each workpiece agent will engage in several
joint commitments with machine agents. The joint commitments, though, may
include more than two agents in case several workpiece agents resolve a resource
conflict by agreeing on a certain order for using the conflict resource. The size of
the commitments is therefore differing. Finally, the roles of the workpiece agents
are all fixed, but the roles of the machines are not.

With respect to the existing interaction protocols characterised so far, the above
classification matches best with the partial global planning approach which fully
matches or subsumes the above classification (see section 3.2). Other interaction
protocols, such as the continuous double auction or distributed constraint satisfaction,
have less correspondence.

Conceptually, the PGP approach is also able to resolve the above problem of
meeting deadlines. Several agents follow their plans to meet a certain deadline by
allocating resources and may run into conflicts with other agents. These conflicts
must be identified and resolved by the interaction protocol, just as PGP does so for
distributed hypothesis formation. Since PGP was designed for distributed hypothesis
formation, though, the interaction approach of PGP must be adapted to accommodate
the peculiarities of the above problem (the same is true for GPGP as presented in [6]).
Firstly, conflicts occur because of an overloaded resource. And secondly, conflicts

must be resolved by determining – possibly through negotiation – which workpiece
has a higher priority. Strictly speaking, PGP and GPGP thus do not resolve the above
dependency because the necessary changes go beyond protocol customisation as
defined in the previous subsection. However, with PGP/GPGP a general framework
has been identified that provides a basis for developing an adapted interaction
protocol.

4 Related Work

The work on interaction-oriented programming has proposed analysis and design
methods that use interactions as a basic concept for structuring an agent-based system
(see e.g. [8,14]). These approaches put emphasis on the necessary interactions in an
agent-based system and use concepts like team modelling or goal decomposition to
identify the need for interaction. So far, however, this work has not addressed the
aspect of identifying existing interaction protocols able to satisfy this need.

An increasing amount of work has been invested in the development of design
patterns for agent-based systems (see e.g. [9,12] for the concepts). In this work,
concepts of agent-based systems are specified in a general format in order to allow the
re-use of these patterns. The work on design patterns is thus complementary to our
work. While design patterns provide the re-usable interaction protocols, our design
method explains how to choose the right interaction protocol for the design problem
at hand.

Several researchers have developed taxonomies for classifying dependencies (see
e.g. [13,17]). But despite their ground-breaking work, these classifications are not
sufficient for re-using interaction protocols. Malone and Crowston [13], for instance,
only provide a detailed taxonomy for tasks having resource conflicts. Their taxonomy
does not cover state or preference conflicts (e.g., two workpieces which need to be
assembled into one agreeing on the goal station). Malone and Crowston themselves
do not claim to provide a complete taxonomy; for the re-use of interaction protocols,
though, a complete taxonomy of interaction protocols is required (even if it is less
detailed).

5 Conclusion

This paper has presented a method for re-using existing interaction protocols during
the design of agent-based control applications. The main contribution of this work is a
set of classification criteria that extracts the general requirements of an interaction
situation on the interaction protocol to be used. The classification criteria are easily
applied to an interaction situation because they were derived from the general
specification of such situations. It is therefore relatively straightforward for a designer
following the first two steps of the DACS methodology to perform the classification
of each interaction situation. How this is done was shown with the help of two
example dependencies from real-world control applications at DaimlerChrysler.
Furthermore, the paper has shown – due to the space limitations with only two
examples – that the classification scheme puts conceptually different interaction

protocols into different classes. The classification scheme thus enables a designer to
select a suitable interaction protocol for a given interaction situation and thus to re-use
existing interaction protocols he is not familiar with.

This claim has been validated in several real-world control applications – most of
which have led to the implementation of a realistic simulation. After the first two
applications the method has been revised considerably and the result has been
presented here. To complete the evaluation, it is planned to test the complete DACS
methodology with engineers designing control systems. Once these tests are
successfully completed, the methodology can be released to development teams.

Nevertheless, it is not expected that the design method presented in this paper will
remain unaltered after release. First of all, new interaction protocols will be developed
in the future and, once characterised, should be added to the protocol library to
enlarge the set of protocols that can be re-used. Secondly, new classification criteria
may have to be added in the future if the newly developed interaction protocols fall
into a single class of the existing classification scheme. Such an extension of the
classification scheme could, for example, address further variations of the distributed
constraint satisfaction technique. The work presented in this paper, though, has
developed the concepts and the basic criteria for re-using existing interaction
protocols.

References

1. B. Burmeister, A. Haddadi, K. Sundermeyer: Generic Configurable Cooperation Protocols
for Multi-Agent Systems. In C. Castelfranchi, J.-P. Müller (eds.), From Cognition to
Action, LNAI 957, pp. 157 – 171. Springer-Verlag, 1995.

2. S. Bussmann, N.R. Jennings, M.J. Wooldridge: On the Identification of Agents in the
Design of Production Control Systems. In [3], pp. 141 – 162.

3. P. Ciancarini, M.J. Wooldridge (eds.), Agent-Oriented Software Engineering, LNCS 1957.
Springer-Verlag, 2001.

4. W.J. Clancey: Heuristic Classification. In Artificial Intelligence, Vol. 27, pp. 289 – 350,
1985.

5. B. Coulange: Software Reuse. Springer-Verlag, 1998.
6. K.S. Decker, V.R. Lesser: Designing a Family of Coordination Algorithms. In Proc. of the

First Int. Conf. on Multi-Agent Systems, pp. 73 – 80. San Francisco, USA, 1995.
7. E.H. Durfee: Planning in Distributed Artificial Intelligence. In G.M.P. O'Hare, N.R.

Jennings (eds.), Foundations of Distributed Artificial Intelligence, pp. 231 – 245. John
Wiley & Sons, 1996.

8. M.N. Huhns: Interaction-Oriented Programming. In [3], pp. 29 – 44.
9. E.A. Kendall: Role Models: Patterns of Agent Analysis and Design. In British Telecom

Technical Journal, 1999.
10. E.A. Kendall: Agent Software Engineering with Role Modelling. In [3], pp. 163 – 169.
11. M. Klusch: Information Agent Technology for the Internet: A Survey. In Journal on Data

and Knowledge Engineering, Vol. 36, No. 3, 2001.
12. J. Lind: Patterns in Agent-Oriented Software Engineering. In this volume.
13. T.W. Malone, K. Crowston: The Interdisciplinary Study of Coordination. In ACM

Computing Surveys, Vol. 26, No. 1, pp. 87 – 119, 1994.
14. S. Miles, M. Joy, M. Luck: Designing Agent-Oriented Systems by Analysing Agent

Interactions. In [3], pp. 171 – 183.

15. H. Mili, F. Mili, A. Mili: Reusing Software: Issues and Research Directions. In IEEE
Trans. on Software Engineering, Vol. 21, No. 6, pp. 528 – 561, 1995.

16. T.W. Sandholm: Distributed Rational Decision Making. In G. Weiss (ed.), Multi-Agents
Systems, pp. 201 – 258. MIT Press, 1999.

17. J.S. Sichman, R. Conte, C. Castelfranchi, Y. Demazeau: A Social Reasoning Mechanism
Based On Dependence Networks. In Proc. of the 11th European Conf. on Artificial
Intelligence, pp. 188 – 192. John Wiley & Sons, 1994.

18. R.G. Smith: The contract net protocol: High-level communication and control in distributed
problem solving. In IEEE Transactions on Computers, Vol. C-29, No. 12, pp. 1104 – 1113,
1980.

19. M.J. Wooldridge, G. Weiß, P. Ciancarini (eds.): Agent-Oriented Software Engineering II,
LNCS 2222. Springer-Verlag, 2002.

