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Abstract

The success of agent-oriented concepts in various ap-
plication domains, in particular in manufacturing control,
creates the need for an agent-oriented analysis, design, and
programming methodology. This paper presents a program+
ming method that covers one step of the necessary methodol-
ogy. Given a specification of the tasks to be performed, the
method allows to program the corresponding agent in three
steps: (i) programming of the individual tasks; (ii) synchro-
nization of tasks to avoid concurrency problems; and (iii)
specification of script execution on a single processor ma-
chine. The programming method was specifically designed
for implementing manufacturing control agents and com-
plieswith the industrial requirements stated in this paper.

1 Introduction

Multi-agent systems has become the key information
technologyfor thenext generation of manufacturing control.
Motivatedby the inability of existing manufacturing systems
(i) to deal with theevolution of products and (ii) to maintain
a satisfying performance outside normal operation [13],
manufacturingesearch and industry has propokelbnic
manufacturing systems (HMS). This new manufacturingar
adigmis supposedo overcome these deficits with the help
of concepts like autonomgooperation, and self-similarity

and controlling manufacturing processes, whereas multi-
agentsystems is a software technology for realizing the in
formationprocessing of a holonimanufacturing system [6].
Thatis, multi-agent systems is an enabling technology for
holonicmanufacturing. This thesis is supported by a compar
isonof the terms agent and holon: A holon containsrifa-
mation processing and the physical processing part of a
manufacturingentity, while an agent is some kind of software
process. Even though the physical processing part is net man
datoryfor a holon, and sometimes the term agent is also used
for physical entities, thisharacterization of agents and ho
lonsis fairly common.

Thesuccess of multi-agent concepts in thenufacturing
domaincreates new challenges for the technologyart
from the (problem-solving) functionalityan industrially
usedmanufacturing system must also satisfy properties such
asreliability, fault-tolerance, maintainabilityransparengy
etc. But aboveall, for multi-agent technology to be widely
usedand accepted in industnyon-researchers must be en
abledto apply agent-oriented techniques just as any other en
gineeringmethod. This implies iparticular that engineers
areenabled to design and program an agent-oriented control
systemin a straight-forward andfefient mannerThus, the
succes®f multi-agent systems createltimately the need
for an agent-oriented analysis, design, and programming
methodology.

This paper makes a first step towardsaaent-oriented

[14]. In a holonic manufacturing system, autonomous andmethodologyfor manufacturing control of the shop floéir

self-reliantmanufacturing units, calldablons, cooperate in
orderto achieve theverall manufacturing goals. A system
of holons is called a holarchy and may itself be a htlah

presents programming methaithat allows to program cen
trol agents once gpecification of each agent has been de
rived in a previous design step. The programming method

actsas an autonomous and cooperative unit in another-holarmapsthe control agent onto a computational architecture

chy [7]. Both principles enable holonic manufacturittg
flexibly organize and control the whole manufacturing-pro
cess of a company

Eventhough at first glance the ideas of HMS seem identi
cal to those of multi-agent applicatioltsmanufacturing (cf.

whoseimplementation is transparent to the programmer
Themethod presented in thimper is the result of two-re
searchprojects at DaimleBenz in which agent-oriented
techniquesvere applied to car manufacturing. The develop
mentof the control systems in cooperation with the plagts

e.g.[4,10,12,17]), a thorough comparison reveals significant vealedthe need for a methodology that can be applied by en

differencesHMS is an oganizing principle for structuring

gineerswithout a research backgroumdagent technology



The paper is aganized as follows. Theext section dis but not about their own mental attitudes or that of
cussegeneral industrial requirements on the development of  othercontrol units.
agent-oriente@dystems for manufacturing control. Sect®n
presentghe programming method for control agents in three
steps:(i) individual programming of control tasks, (ii) syn

This requirementdoes not deny the creation of mental
categoriesnside an agent, like intentions. It only states that

chronizationof tasks to avoid concurrency problems, and (h€agent does not have to reason about them. Furthermore,
(iii) specification of script execution on a single-processorth's requirement may be invalid for virtual enterprises which

machine The programming method is evaluated with respect aretﬁmporary(/jjomt ventures of autonorgou.shcompafnkl)es.
to the industriarequirements. Finaljyprevious work related Thesecond requirement is concerned withtife of be

to the aim of this paper is discussed before the paper is Conhayior a contrplunlt must exhlplt. Maqufactunng control
cluded. units are continuously faced with a high rate of repeated

eventsthat are known, but unpredictable. This flow of events
mustbe handled timely andfefiently. The handling of the
eventscan consequently be fixed beforehand with the help of
2 Industrial Requirements routines,while only the initiation and execution of routines
mustbe performed on-line. The set of events and their pattern
A multi-agent manufacturing control system usually re of occurrence changes only slowly over time. These long-
quiresthe use of special reasoniagd coordination teeh ~ termchanges are mainly caused by major product and pro
niques.Depending on the manufacturing goals and the typeductiontechnology changes.
of manufacturing process, fifent kinds of controhrchitee
turesand/or strategies might be necessary in ordeptd
mally control the manufacturing process (cf. e.g. [1,2,4]).
However,despitethe special needs of a particular manufac
turing application, any industrial control system must meet
generalrequirements. These requirements cover functional  This requirementloes not ban explicit reasoning such as
andsoftware-engineering aspects of the control system.  planningor scheduling from manufacturimgntrol, but em
phasizeghat for most control units routine-based behavior is
sufficient (cf. [1,2] for examples of explicit reasoning in
cludedin autonomous and cooperative manufactusyg

. tems).Self-adaptiveness, on the other hamdy require ex
Manufacturingcontrol systems are tg&, complex arte  jicit reasoning about théehavior of an agent. This

factswhich are designed to perform a clearly-defined task in reasoninghowever is not concerned witthe agent reae

a well-structured, standardizezhvironment. Even though o, 1o a specific event, but supervises the behavior over time.
manufacturingprocesses experience a lot of changesdénd

turbancesthe degree of uncertainty and unpredictably is not
comparabldo that of space, trii€, or service applications.
As a consequence, manufacturing applications require less Apartfrom the functional requirements, any control-sys
mentaland sociadeliberation than typical applications of temthat is supposed to be used in a productive manufacturing
multi-agentsystems. This is particularly true for mental eate environmenimust meet general industrial standards. These
goriessuch as desires, intentions, or joint intentions, includ standardspecify among others, requirements fetiability,
ing their associated reasoning. Their use is possible, but nofault-tolerance, diagnosibilifand maintainabilityin partic
appropriatefor most manufacturing control tasks. ular, control systems must reach a degvéeeliability that
Moreover,all manufacturingagents cooperate in order to guaranteesontinuous operation. This is equally true for the
achievethe overall manufacturing goals.itt respectto control software. Product reliability howevey is only
thesegoals, an agent never deliberatively rejects the cooperaachievablef the software development process is performed
tion with another agent. Only when the requested actians in an engineering-likenannerinstead of an ad hoc fashion.
impossibleor strongly disadvantageous to the manufacturing  Moreover,as already gued in the introduction, the wide-
processit refusesheir execution. In this sense, the manufac spreadapplication of agent-oriented techniquesnidustrial
turing agents are semi-autonomous. This leads us to the firstontrol requires that the software development process is

Requirementl: Manufacturingcontrol units mostly
requirea routine-based behavior that is both timely
andefficient. This behavior should be either configur
ableor self-adaptive.

2.1 Functional Requirements

2.2 Software-Engineering Requirements

requirement. supportedoy a methodologyT his methodology should en
ableskilled engineerso develop the agent-oriented control
Requirementi: Manufacturing control systems-re systemin a straight-forward and fefient manner
quire semi-autonomous agents. The agents must rea A method for programming an agent should therefore

sonabout the behavior of the manufacturgygtem, meetat least the following minimal requirements:



Requirementll: Programming methods mupto-
vide encapsulation of data and procedures.

RequirementV: Control programs must have a clear
semantics. Additionally, the behavior of an agent

should be completely specified by its control pro

gram.

Requiremen¥: A programming method or method
ology shouldlead straight-forward from the control
taskto the agent program.

Agent-orientecorogramming methods must fulfill ktast

tasksis synchronized in order #void data and action con
flicts. Finally, the concurrent execution of tasks is mapped
onto a single-processor machine. The result of thlesse
stepsis the operational specification of a control agent which
solvesthe control tasks specified.

The following three subsections outline this agent-ori
entedapproach to the programming of manufactuiGog
trol units. Starting from the individughsks of an agent, they
showhow the corresponding scripase programmed (stib
section3.1), synchronized (subsection 3.2), asdembled
into a single-processor prograisubsection 3.3). The final
subsectiorthen evaluates the programming approach with

theabove requirements in order to be applicable to industrialrespecto the industrial requirements stated in section 2.

control problems.

3 Agent Programming

Manufacturingapplications requir@a design methodel
ogy that deriveghe architecture and algorithms of the control
systemin a top-down approach from the overall manufactur
ing goals. First of allduring an analysis of the overall goals
andthe process characteristics, the methodoldgmntifies
global control strategies which optimally run the manufac

3.1 Task-Oriented Programming

Control tasks are implemented with the help of scripts.
Scriptsare procedures with parameters, local varialaled,
alist of commands, just as in most imperative or object-ori
entedprogrammindanguages. Local variables contain eom
mon datastructures (numbestrings, lists, etc.) and cem
mands allow conditional execution (if-then-elselpops
(for/while), and the invocation of other scripts.

turing process. In a second step, the control strategiesare de Scriptsand globalvariables are grouped into modules.

composednto single control tasks which can be executed lo
cally with the partial knowledge of the shop flodihese

Eachmodule provides aertain functionalitylike e.g. sensor
interpretationprotocol managemerdy scheduling. A set of

controltasks are then grouped and assigned to the agent of modulesfinally constitutes an agent. A typichinctional

manufacturingunit. In this papemwe assume to have accom

agentarchitecture for manufacturing control is depicted in

plishedthese steps and are now faced with the task of designfigure 1.

ing and implementing each individual agent asoatrol
component.(Methodologies for analyzing and designing
multi-agent systems and deriving a specification tfor
agentsf the system have been proposed in [4,8,15,17].)
Given the control tasks onagent has to perform, an
executablgrogram is designed for each task. Becauskeof
inherentconcurrency otontrol strategies, the execution of

Modulesin turn are aganized in a module hierarchy
which defines a non-reflexive, transitive subsumption-rela
tion between modules. An example hierarchgiien in fig
ure2. A script can call (i) any script of the same module, (ii)
anyscript declared agstricted in superordinate modules,
and(iii) any script declared gaublic. An analogous rule ap
pliesto the use of global variables.

| sensor
—> sensors —|—> . .
interpretation \ —
| decision ,
I / making
L rotocol
-@—9P=| communication P
| management
|
|
actuator action
P a— actuators - - .
I control scheduling

basic modules

Figure 1: Functional agent architecture.

— major flow of
information



root pieces Scripts initiated by the operator that overraerent
actionsare examples of the latter
Taskdependencies mube declared by the programmer
sensors communication reasoning actions onthe script level, i.e., scripts get intonflict either always
or never At run time, script conflicts may then be avoidied
the set of active scripts ikept free of conflicting scripts.
protocols scheduling Sincethe empty set ddictive scripts is always conflict-free,
it is suficient to make the set conflict-free after a new script
hasbecome active. The sequential ordering of scripts, re
spectivelythe choice of the script to be abortedy be de
clareda priori or computed at run time.

Scriptsare invoked byevents. If an event occurs, it is In summarydata conflicts are avoided through declaring
mappedo a script andhe aguments of the event are passed mutual exclusion within script bodies, whereas script-con
asparameters to the script. The mapping is defined for eacllicts are avoided by specifying script relations.
moduleand events are created with respect to a module. The
eventsto be mapped can be external (coming from basic sen3 3 Computational Model
sor or communication facilities) or internal (created by
scripts).The activation of scripts (within the agent) is usually ~ Thefinal step of the agent programming is to map the con
initiated by external events. The invoked scripts then either currentexecution of tasks onto a single-processor machine.
call other scripts or create internal events (cf. fig. 3). Excep Forthis, itis necessary to bring the tasks into a (possibly in
tions are only agent initialization artiming events which  terleaved) computationalsequence, i.e., scripts must be
bothmay start activation. scheduledMoreover the scheduling has to be applaxtoss
all modules because the behavior of an agent is determined
by its handling of events within several modules. For
instanceafter its creation aensor signal is first interpreted
— external internal <€— andclassified by a scrigh the sensor interpretation module
(cf. fig. 1). This script creates a corresponding event that trig
gersa script in the reasoning module. Depending on its deci

; sion,the event is either handled as a time-critical or a normal
scripts ' i .
I_> taskin the two action modules (@rmay even be dropped).

Consequentlythe ordering of scripts hde be defined

Figure 3: Script invocation. acrossall modules which is countémtuitive to the modular
programmingof tasks. In ordeto resolve this conflict, we
introducea second view in addition to the modular view of
taskprogramming: event prioritization. Events assigned

3.2 Concurrency of Tasks apriority which is passed along with event creation and script

o ) invocation(cf. fig. 4). External events whaitiate script ae

Controlapplicationsalways require concurrent task exe  tjyation areassigned a pre-defined priorifjhe priority of
cution. Drilling machines for example load and unload work jnternalevents is determined dynamically by the sacigtt

piecesin parallel in order tanaximize throughput. Concur  ing the event, while subscripts inherit the priority of the-call
rentexecution, howevemay createindesirable éécts that  jng script.

eitherresult in inconsisterdata or critical control behavior

sensor
interpretation

Figure 2: An example module hierarchy.

events

In general, conflicts between tasks may aoiséwo levels: events
(i) concerning data, and (ii) between scripts. ,
Data conflicts occur whenever multiple scripts read -ﬁ—xbexternal internal <—
and/orwrite data variables concurrentljhese problems are = —
knownfrom distributed systems and can be solved with-stan
dardtechniques, such as critical section command&iora scripts
phores. q | inherit P compute
Script conflicts are caused byask dependencieswd
typesof dependencies are possible: (i) a set of tasks has to be Figure 4: Priority assignment.
executedsequentiallyor (ii) a set oftasks is incompatible
andat least one script has to be abortedefample of the An example of a priority scheme is the following list of

former are scripts that handle enteriagd leaving work  classeglisted with decreasing priority):



time-critical: Eventsthat must be handled within a controlbecause a script is finished or because it creates an in

certaintime-frame. The fast handlingf these event ternalevent, or it is interrupted by an external event.
guaranteethe reactiveness of the agent. With the computational architecture we have described

how task programs can be mapped onto a single-processor
task-oriented: Eventsthat accomplish the normal-op machineand havehus completed the specification of acon
erationof the agent (usually the actual control tasks)  trol agent. The resulting specification can nowekecuted
andthat are not time-critical. ona comparatively simpler architecture.

optional: Eventsthat provide additionglinctionat

ities like monitoring or diagnosis. 3.4 Evaluation

The programming method presented in this section em
ploys concepts and techniques from modular programming
anddistributed systems. Thethniques are combined in a
specific approach toagent-oriented programming of
manufacturingontrol tasksn order to meet the industrial-re
guirementson the functionality of the control system and the
softwaredevelopment process.

2. Betweermodules scheduling is done with a fair strategy ~ First, the programming approach meets the functional re

(e.g.,through round-robin). qwrement_sstated in subsectlon_ 2.1. A typical _funct|onal

agentarchitecturdor manufacturing control requires mod

3. Within a module the scheduling can be according to anyulesfor physical control (sensing and acting) and for agent

appropriatestrategy (round-robin, FIFO, LIFO, etc.). interaction but does not explicitly model the agenthental
attitudesor the mental attitudes of other agefrejuirement

It is possible tadd more classes to the priority scheme. I). The decision making dhe agent may evaluate its own be
In some applications, for example, it is appropriate to distin havior or requests for cooperation with respect to its own
guishbetweertime-critical events that endanger the safety of goals,butit does so without considering the attitudes of other
thesystem and time-critical events that decrease the sgstem’agents.
performance. This conceptiorof an agent architecture is supported by

The computationahrchitecture described above is much scriptprogramming approach. In particylacripts allow to
simplerthan the functional architecture of an agent (cf. fig. efficiently implement routine-basdukhavior that is both ef
1). The computational architecture still consistshe basic  ficient and timely (requirement Il). Configurability self-
modulesbut in addition only requires avent control and  adaptivenes®nthe other hand, are not explicitly supported

The executionof scripts is then performed according to
thefollowing rules:

1. Classesre executed strictly in sequential order: First all
scriptsof class time-critical, then all scripts of class task-
oriented,and finally all optional scripts are executed.

a script execution module, as depicted in figure 5. by the approach.dprovide such functionalifgheapproach
All events (internal or external) are sent to the event con hasto be extended in the future.
trol. According to the rules described above it decidieich Second,the programming method alspeets the soft

scriptis to be executed next and hands this script to the scriptvare-engineeringequirements stated in subsection 2.2.
execution.This module either returns control to the event Scriptsand variables are encapsulated in modules and have

— sensors

event
control

script Jaia
execution —
structures

—® major flow of
Figure 5: Computational architecture. information

-4 communication

- actuators

A

basic modules



only limited access to variables and scriptether modules  asingle processoFor complex agents, the resulting behav

(requirementll). ior of the agent is therefore fidult to predict.
Theprogramming method also provides a clear and-com  Brazietet al. [3] have developed a formsgecification
pletesemantics (requirement 1V). The accessther vari frameworkfor complex reasoning systems that \applied

ablesand scriptgs explicitly defined in the module hierar  to network management. The framework allows to specify
chy. The flow of control as well as the sequence of executionprimitive and complex tasks of a component and to define the
(of tasks) is specified by the script invocation associated withinteraction along information links. dsk representation,
the priority assignment and the execution rules of the-com however,s knowledge-based (df.g. [9]) and is thus not ap
putationalmodel. Finally the declaration of data and tasks propriatefor the domain considered in this paper where the
dependenciesnables the programmer to avoid conflicts of overall manufacturing task is decomposed into operational
tasksat run-time. All these aspects are explicitly specified strategieand routines.
and thus provide a clear and complete semantics of the A framework for agent-oriented programming was first
agent'shehavior proposedy Shoham [19]. In his approach, the state of agents
Last but not least, the programming methpeposed  is representewith the help of mental categories, such as be
guidesthe programmer through the design process for anliefs, obligations, and capabilities. The states are changed by
agent(requirement V). It starts with the tasks to be performed communication,actions, and commitment rules. Thomas
and derives scripts and modules for their execution. The[20] extendedhis framework by planning abilities that sup
scriptsare then synchronized in order to avoid run-time-con port the mental reasoning of an agent. For manufacturing
flicts. And finally, the execution of scripts is explicitly-se  control, however both approaches are not appropriate be
guentializedon a single processor causemental categories are inadequate primitives for ex
pressingmost control tasks (cf. section 2). AgentSpeak, on
the other hand, is plan-oriented and thus more suitable for
programmingtasks [21]. Howeverthe language does not
4 Related Work providemechanisms for modular agent design or execution
control (except for plan priorities).
. . . A lot of work has been done on agent architectures (see
entedanalysis, design, or programming. _ [16,22]for an overview). Evethough many of these arehi
Burmeister[4] reviews object-oriented methodologies tecturegnclude routine-based capabilities, hardly anghi

for analysis and design, and CO”C'“d?S that they are n_ot ad(:‘[ecturesupports modular programming and execution con
quatefor the development of agent-oriented systems. First Oftrol as described in this paper

all, the internal architecture as well as the interaction of
agentds more structured than that albjects. And second,
agentsmay decide autonomously whether or no¢xecute
arequest by another agent. Burmeister therefore proposes a
methodologyfor analyzing and designing an agent system.  This paper presented a programming method for design
This methodology describes how to identify the agents anding manufacturing control agents. Starting from a speecifica
their relationships, but does not explain how to program eachtion of the control tasks an agent has to perform, a program
agent. that exhibits the requestecbntrol behavior is derived in
Collinot et al. [8] proposed a methodology for specifying threesteps: (i) for eachask, a set of scripts is implemented
collectivebehaviors, like soccer playing. Elementary behav that accomplishes the taskj) conflicting scripts are de
iors of agents are coordinated andamized in order to create clared,and (iii) single-thread script execution is specified
the expected group behavidrhis contrastshe approach of  throughevent prioritization.
this paper that derives individual behaviémsm the overall The programming method presentidfills the industrial
strategiesFurthermore, the methodology does not describerequirementsor manufacturing control. First, semi-auton
how the individual behaviors are implemented and how un omy and routine-based behaviprovide the appropriate
desirable conflicts between elementary behaviors are agentmodel. Second, the programming method méwets
avoided(only positive influences are considered). software-engineering requirement. Programming is modu
Kinny et al. [15] proposed a methodology for designing lar, extensible, and transparent to the programmer
BDI agents. The methodology allows to define the possible Theprogramming method thus accomplishes one step in
beliefsand plans of an agent. The plans are then exeonted thedevelopment of an agent-oriented manufacturing control
a BDI architecture, like the procedural reasoning systemsystemFirst, the overall control task is analyzed and a vision
[11]. The methodology proposed by Kinny et al., howgver of the required contrdbehavior is developed. The overall
doesnot support modularization. Nor does it explicitly spec controlbehavior is then decomposed into strategies and indi
ify in a transparent form how the plaarg sequentialized on  vidual control tasks. These control tasks are finally imple

Sofar, only few work has been concerned watent-ori

Conclusion



mentedwith the help of the programming method presented. Theories Architectures, and LanguagesTéd_-94), Amsterdam,

Futurework will be to extend the method &oframework that
includesall analysis, design, armfogramming steps neces

saryto develop manufacturing control systems. Eventually

theresulting methodology wiklso include concepts for test
ing and diagnosing such systems.
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