
1

published in Pre-Proceedings, MAAMAW-94, Odense, Denmark, 1994

A Multi-Agent Approach to
Dynamic, Adaptive Scheduling of Material Flow

Stefan Bussmann
Daimler-Benz AG

Research and Technology
Alt-Moabit 91b, D–10559 Berlin

email: bussmann@DBresearch–berlin.de

Abstract
Advanced manufacturing control still remains an important topic in current research. Es-
pecially aspects of dynamics and of failures in the production process are insufficiently
taken into account by systems in use. This paper presents a multi-agent approach to
scheduling material flow that shows dynamic and adaptive behaviour. Even though ma-
chine scheduling has found a thorough treatment in AI literature, there are only few in-
vestigations on the material flow problem. In this paper, it is argued that a decentralized
architecture with centralized control fits well with the local and global aspects of the
scheduling problem. The top-level algorithms of the scheduling process are outlined and
further improvements required are sketched out.

1 Introduction

Advanced manufacturing control has long been an important topic in Artificial Intelli-
gence research and has recently attracted interest of researchers in the field of Multi-
Agent Systems because practical experience with existing approaches remains unsatis-
factory. Classical scheduling methods typically aim at optimising the solution with
respect to a global goal function and assume a static environment, i.e. all necessary in-
formation is known beforehand. Real manufacturing control, however, is much more dy-
namic due to the continual arrival of orders and various perturbations of the manufactur-
ing process, such as breakdowns. This dynamic character of most manufacturing
problems renders the long-term optimisation of schedules pointless and rather de-
mands a more adaptive scheduling strategy.

This paper presents a dynamic and adaptive approach to material flow scheduling that
is based on multi-agent techniques. The material flow problem has been scarcely
treated in the multi-agent literature. Known to us is only the work in [PLJ+86] that imple-
ments a Kanban-like strategy. Concerning dynamic scheduling, some work has been
done (cf. [BO92], [OSH88], or [DK93]) to tackle machine scheduling using contract net
protocols [Smi80]. The basic idea is to use bargaining between autonomous agents in
order to find an optimal order assignment, much in the spirit of supply and demand in
economics. In all cases the principle is as follows: a broker announces an order to be
scheduled; the transporting units make bids; and the broker awards the order to the best
bidder. However, for global problems such as scheduling in the manufacturing domain
(which, in general, is NP-hard) the idea of bargaining is inappropriate. To arrive at an
optimal solution to the overall (global) assignment process, it may be necessary to as-
sign orders to a transporter even though the assignment is locally suboptimal. There-
fore, the process of bidding, which is basically a local decision making, cannot guarantee

2

published in Pre-Proceedings, MAAMAW-94, Odense, Denmark, 1994

a globally optimal solution. As we will argue in later sections, it is necessary to introduce
more centralized control.

Our design of the scheduling process is along the principle of ”as decentralized as pos-
sible, as centralized as necessary”. During the discussion of the material flow problem,
we will outline which decisions can be made locally and which must be taken with a
global perspective. Following these considerations, we will present an architecture that
distributes all local computations to the transport units and gives the responsibility for
the global aspects to a coordinator. Additionally, we will analyse how the multi-agent
techniques contributed to our solution of the material flow problem.

The remainder of the paper is organised as follows: the next section defines the scenario
and the problem to be solved; section 3 highlights important aspects of the problem; sec-
tion 4 describes the overall architecture and the main algorithm for the scheduling pro-
cess; section 5 gives some more details on the implementation; and the last section
evaluates the multi-agent approach to the material flow problem and outlines aspects
that could be improved upon in future work.

2 Problem Definition

This section presents a model of material flow in a factory and defines the transportation
problem to be solved.

Basically, the factory consists of a set of machines and a set of transporters. Machine
orders specify which machine has to produce which product out of which material in
which time interval. Implicitly, these orders define a material flow by listing produced ma-
terial as consumed material in a later order. For transportation, the factory is equipped
with transport units, such as forklifts or conveyer belts. The basic task of the material flow
system is to compute a schedule for the transport units such that every piece of material
reaches its next destination in time.

In the context of this paper, we assume machine orders to be given from outside. They
are inserted dynamically into the scenario while previous machine orders are in execu-
tion. Furthermore, the execution of the schedule suffers from perturbations. On one
hand, orders may change w.r.t. their specification after being introduced to the system
(for instance, production steps are delayed or become more urgent); on the other hand,
failures, such as sudden breakdowns of transporters, may occur. Due to these imposed
characteristics of the manufacturing environment, the material flow problem is dynamic
and perturbed.

2.1 The Model of Material Flow

We will now describe the model of material flow. It consists of a set S of storage spaces
S1 , .., Sm , a set M of machines M1 , .., Mn , a set T of transporters T1 , .., Tq , a set N of
material, an environment E, and a time model �. We assume the environment to contain
a (planar) graph in which machines and storage spaces are placed at the vertices,
whereas transporters can freely move along the arcs of the graph. Figure 1 gives an ex-
ample of such a graph for a small factory.

Raw material flows through the production process and is transformed into intermediate
or final products. For reasons of simplicity, we will refer to raw material, intermediate and

3

published in Pre-Proceedings, MAAMAW-94, Odense, Denmark, 1994

final products simply as material. An instance of the set N of materials is of the form (id,
volume) where id is the identification number of the specific material and volume is a pos-
itive, non-zero real number. Material can either be stored in a storage space, at a ma-
chine site, or on a transporter, all having limited storage capacity. This is expressed by
the following functions (�(N) denotes the power set of N):

capacity: S ∪ M ∪ T �� �+
content: (S ∪ M ∪ T) x � �� �(N)

The content of a storage space, of a machine storage space, or of the loading space of
a transporter may never exceed the storage capacity, i.e. the following global constraint
must hold:

∀ t ∈ �, Mi ∈ (S ∪ M ∪ T): Σ∀ n ∈ content (Mi,t) volume(n) ≤ capacity(Mi) (2.1)

Any storage attempts that would exceed the storage capacity are declined.

Figure 1: Factory Example

M1

M2

M5

M6

S1
T1

T2

M3

M4

Machine Orders and Their Generation

A machine order specifies that a machine Mi or a stock room Si is supposed to produce
the material np ∈ N out of the material nc ⊂ N beginning from the starting time ts up to
the finish time tf (ts < tf). In the case of a storage space, it either consumes or produces
material in order to model the material import and export of the factory.

A machine order is executed iff nc ⊂ content(Mi, ts). Then it is true that np ∈ content(Mi,
tf). This definition implies that all consumed material must reach the machine in time,
otherwise the order could not be executed and the product would not be produced.

Machine orders are entered dynamically into the scenario, i.e. there exists a sequence
(ti)i∈ � in �, such that at time ti a set MOi of machine orders is generated. The generation
is random from the point of view of the model (it may be deterministic for an outsider).
It may also alter already announced orders by introducing new versions of previously
generated orders (which models changes in the specification of orders). A set MOi obeys
a global consistency constraint which states that every product is consumed by a ma-
chine order scheduled later on:

∀ i ∈ �, o2 ∈ MOi: nc ∈ consumed(o2) ⇒ ∃ o1 ∈ MOi: nc = product(o1)
∧ finish-time(o1) < start-time(o2)

This constraint enables us to derive a set of transport orders for every material that is
consumed, i.e. an order to transport material nc from the site of machine(o1) to the site
of machine(o2) between finish-time(o1) and start-time(o2). Consequently, for each ele-
ment ti of the sequence (ti)i∈ � there is a set of transport orders TOi which describes the
material flow for the set of machine orders MOi. A formal definition of a transport order
is omitted, since it can be derived straight forward from what has been said above.

4

published in Pre-Proceedings, MAAMAW-94, Odense, Denmark, 1994

Transporter Actions

In order to achieve the material flow defined by the transport orders, the transporters
execute a sequence of actions consisting of move, load, and unload. A move defines
the movement of the transporter, beginning at a specified start time, from one position
on the routing graph to a second. Any acceleration or deceleration phases are ab-
stracted and a constant velocity is assumed (possibly different for each transporter). A
load action describes that the transporter transfers the material from a machine or a stor-
age space into its loading space. An unload is defined correspondingly. Of course,
constraints concerning the consistency of the action sequence, the capacity limits of a
stock, the existence of material for loads or unloads etc. apply. They are omitted here
to avoid deviation from the main topic discussed.

2.2 The Material Flow Problem(s)

The basic task is to compute a transportation schedule which assigns an action se-
quence to every transporter such that every piece of material reaches its destination in
time. This task is called the fulfillment problem.

Since the machine schedule is dynamic, the scheduling of transport orders must be
done incrementally. At every ti of the generation sequence (ti), new orders must be incor-
porated into the existing schedule. Additionally, already existing schedules must be
adapted because every generation step may change previously announced orders.
Thus, the scheduling mechanism must be dynamic and adaptive.

For a specific generation sequence, it may be impossible to find a correct transportation
schedule at each step such that all orders are executed in time. This may happen, for
example, because the time to schedule an order is too short or because concurrent or-
ders exceed the total transport capacity. In such cases, we want the system to fill as
many orders as possible, i.e. the percentage of transport orders that are executed
should be maximized.

An extension of the basic transportation problem includes the possibility of transporter
breakdowns. Whenever a transporter breaks down, all orders assigned to it must be re-
scheduled. Furthermore, any material stored in a transporter that broke down must be
picked up immediately and moved to its destination. The possibility of breakdowns
stresses the need for adaptiveness in the scheduling process.

This problem extension is called the failure-including fulfillment problem. Formally,
the problem is defined by a sequence in � such that at each time step certain transport-
ers break down. The system receives the information about the breakdown immedi-
ately.1

3 Analysis of the Problem

This section discusses some aspects of the scenario that will be referred to in later sec-
tions. This concerns especially the computations necessary to schedule a transport or-
der and the relation of a transportation schedule to the storage schedule at the ma-
chines.

1. More realistic would be a delayed notice.

5

published in Pre-Proceedings, MAAMAW-94, Odense, Denmark, 1994

3.1 Evaluation and Scheduling of a Transport Order

The execution of a transport order is depicted in figure 2. In this figure the actions of the
transporter (shown on the upper axis) are related to the time constraints of the corre-
sponding transport order (lower axis). In order to carry out an order, the transporter first
drives to the source (arrival phase), loads the material (loading phase), moves to the
destination (transport phase), and unloads the material (unloading phase). The last
three phases must fall into the interval between start and finish time of the transport or-
der. Furthermore, whenever the transporter picks up the material later than the start
time, then it must be temporarily stored at the source. This interval is called lay time.
Analogously, there is a lay time at the destination.

An important aspect of the transport execution is that the active transport (loading,
transport, and unloading phase) has a fixed time length, given a specific transport order
and a specific transporter. The time length of the active transport does not depend on
the start of the execution, whereas the length of the arrival phase changes whenever the
transporter’s position at the beginning of the execution changes. This position is nor-
mally the destination of the last executed order. Consequently, a permutation of orders
in the schedule changes the time it takes to arrive at the next source.

Many computations for scheduling orders are local to a transporter. First of all, the com-
putation of the arrival phase is different for every permutation of orders. Second, every
transporter has a different schedule for its already assigned orders, and because of that
the arrival phase for a new order is different for every transporter (even if scheduled at
the same time). And third, if the scenario consists of heterogeneous transporters, i.e.
transporters have different characteristics regarding average velocity, transport capac-
ity, or even possible routes, then also the active transport has different lengths for every
transporter. Due to these reasons, the question of whether and how an order can be in-
corporated into the schedule of a transporter is a computation that involves information
only concerning the specific transporter, i.e. it is ”local” to the transporter.

start time finish time

transportarrival loading unloading

lay time lay time

Figure 2: Transport Execution

transport actions

transport order

source destination

A second aspect of the transport execution is its dependence on the storage profiles of
the machines. Even though the active transport may be scheduled any time between the
start and finish time of the transport order, different loading and unloading time points
cause different lay times. This affects the transportation schedule because machines
have limited storage capacity (cf. (2.1)). For instance, a machine runs out of storage
space if a transporter unloads material for a machine order o2 before the machine order
o1 has been started (o1 is executed on the machine before o2) and the total consumed
material of o1 and o2 exceeds the storage capacity. As a consequence, the unloading
of material for order o2 is denied. These situations cause additional perturbations.

6

published in Pre-Proceedings, MAAMAW-94, Odense, Denmark, 1994

Furthermore, the dependency between the transportation schedule and the storage
schedule is strong because any changes in the transportation schedule alter the storage
profile on at least two machines. This effect also arises if the execution time of a transport
order is changed only slightly.

3.2 Multiple Trips and Combination of Orders

A transporter is unable to execute an order if the volume of the material exceeds its load-
ing space. If this is the case for all transporters, then the material has to be divided into
packages and each package must be transported separately. The new set of transport
orders is in most cases assigned to several transporters because a single transporter
has to shuttle between source and destination and therefore would travel a longer dis-
tance. Such multiple trips increase the size of the assignment problem because the
number of transport orders increases.

On the other hand, a transporter may have enough free loading space to take along addi-
tional material while executing an order. Figure 3 gives an example how to combine two
orders by first picking up material at source1, then at source2, and finally dropping off
the material at their destinations. Formally, the combination of transport orders is done
by computing an action sequence that combines (and adopts) the action sequences
necessary to carry out each single order. In contrast to multiple trips, the decision of
whether to combine orders is local to a given transporter.

Figure 3: Combination of Orders

source1 source2

destination2

destination1

loading loading

unloading

unloading

4 An Architecture for Material Flow

Centralized approaches to scheduling problems suffer from the combinatorical explo-
sion of the search space. Already fairly simple scheduling problems may be NP-hard.
For real world scheduling applications, the search space tends to be even larger be-
cause they include more choices and dependencies (cf. section 3.1 on the relation be-
tween the transportation and the storage schedule). Multi-agent systems offer two ad-
vantages here: (i) as distributed systems they allow to utilize concurrency; (ii) by
encapsulating declarative and procedural knowledge the overall system becomes eas-
ier to handle. Both of these advantages apply in the case of the fulfillment problem as
it was described above. The computations that are local to a transporter, i.e. to decide
whether it is able to execute an order, can be done concurrently. Furthermore, any de-
tails about the characteristics of a transporter (for example, its current schedule, the
route chosen etc.) can be encapsulated in the transporter and hidden from the overall
assignment process.

7

published in Pre-Proceedings, MAAMAW-94, Odense, Denmark, 1994

However, a totally decentralized approach is not appropriate. The task of assigning or-
ders to transporters is a global process because an order may only be assigned to ex-
actly one transporter. Consequently, to globally optimize the scheduling process, fully
autonomous agents would need a large amount of coordination. Especially in the mate-
rial flow scenario, every transporter needs to be coordinated with (potentially) every
other transporter. The high communication costs that would originate from such a design
will outweigh the advantage of distributed computing. Consequently, it is reasonable to
introduce a central component that is responsible for global aspects and that coordi-
nates the assignment process. In particular, the evaluation should be done locally by the
transporters and the following assignment globally by a coordinator, so that the schedule
satisfies global optimality criteria. This has led to the architecture that will be described
next.

4.1 The Principal Design

The architecture consists of an agent for every transporter and a coordinator that con-
trols the overall scheduling process (see figure 4). The coordinator receives the new
transport orders and keeps track of the order assignment; it announces, assigns, and
retracts orders if necessary. On the other hand, each transporter has a (local) schedule
for its assigned orders that contains the corresponding action sequence (cf section 2.1).
On the basis of this schedule, it performs an analysis of new orders.

Figure 4: Interactions for the Scheduling Process

coordinator

transporter1 transporter2 transporter n
return
analysis

announce,
assign, or
retract orders

...

transport orders

The top-level scheduling algorithm is shown in figure 5. The system is in a constant cycle
of analyzing and assigning orders. Each cycle goes through four phases. Given a pool
of new orders, the coordinator heuristically selects a subset and broadcasts it to the
transporters. A good strategy is to announce only those with deadlines in the near future.
In the second step, every transporter analyzes the orders with respect to its current situ-
ation and its specific abilities (for more details see section 4.2). The results are sent to
the coordinator who evaluates them with respect to global criteria. In particular, the coor-
dinator searches for an assignment that covers a maximum number of orders. Then the
transporters are informed of the assignment and all orders not yet assigned are either
declared as impossible or must be splitted to fit the transport capacity of the transporters
(for more details see section 4.3).

The principal structure of the scheduling algorithm is similar to the contract net protocol
as it was first proposed by Smith [Smi80]. In his proposal, a manager announces tasks

8

published in Pre-Proceedings, MAAMAW-94, Odense, Denmark, 1994

to contractors; these bid for suitable tasks; and finally the manager assigns the tasks to
the best bidders. The main difference is that the contract net protocol is based on bar-
gaining between manager and contractors, whereas in our approach transporters only
perform local computations and leave the decision making to the coordinator. In particu-
lar, the agents return the result of the evaluation to the coordinator instead of making
bids, i.e. they do not bargain with the coordinator.

Figure 5: Phases of the Scheduling Algorithm

announcement the orders

local evaluation

global synthesis

assignment of orders

pool of new orders

coordinator:

transporters:

coordinator:

transporters:

4.2 Local Evaluation by Transporters

The local analysis of new orders is done on the basis of the transport abilities of the trans-
porter and its current transport schedule. The transport abilities concern, for instance,
the average speed, the loading space capacity, and any other special constraints on the
transportation process (e.g. routing restrictions).

The analysis is divided into two steps. In a first step, the transporter considers each
transport order separately and evaluates it according to the following criteria:

1. Is it possible to execute the order?
a. Can the active transport be done between start and finish time?
b. Is the loading space capacity sufficient?

2. Is there a free interval large enough to execute the order?

In a second step, the transporter checks whether combinations of the announced orders
can be incorporated into its current schedule since a combination of orders introduces
additional constraints. But considering every combination of orders would result in an
exponential algorithm (exponential w.r.t. the number of announced orders). Further-
more, even if enough computational power were available, such an effort would be in
vain due to the frequent perturbations in the manufacturing process. Therefore, the
transporter only estimates the possibility of a conflict by computing a conflict probability
between two orders:

9

published in Pre-Proceedings, MAAMAW-94, Odense, Denmark, 1994

For every two orders compute the percentage of scheduling possibilites that result
in a conflict.2

The result of the order evaluation is returned to the coordinator in a condensed form,
mainly stating only the qualitative result of the analysis. Nevertheless, this result is in-
complete because it contains only a conflict probability for combinations.

The consequence of this incompleteness is that the coordinator may assume assign-
ments to be feasible that cannot be scheduled. In such a case, the coordinator is in-
formed about the failure and puts the orders that were not scheduled back into the pool
of transport orders. Note that a transporter can always schedule at least one order since
the evaluation of a single order is correct.

4.3 Global Synthesis by the Coordinator

The coordinator combines the results of the local analyses of all transporters and
searches for an assignment covering a maximum number of orders. If several maximal
assignments exist, it minimizes the (average) conflict probability per transporter. For ev-
ery order that has not yet been assigned, it analyzes the reasons and takes appropriate
actions:

IF for every transporter it is impossible to execute the order
THEN it cannot be executed by the system.
ELSE

IF for every transporter the loading capacity is exceeded
THEN divide the order into smaller orders and re-announce them.

Afterwards, the coordinator continues with a new cycle of the top-level algorithm (cf.
4.1).

4.4 Evaluation of the Design and the Algorithm

The architecture proposed exhibits the structure that was demanded at the beginning
of this section. Local computations, such as the evaluation and the scheduling of new
orders, as well as transportation characteristics are encapsulated in the transporter
agents. The agentification additionally allows concurrent processing. On the other hand,
the coordinator has a global view on the scheduling process. It keeps track of the order
assignment and receives an abstract analysis from every transporter. On the basis of
this view, it computes a (maximal) assignment that meets global criteria.

The scheduling algorithm is dynamic and adaptive by design. The system incrementally
adds new orders to the existing schedule(s). By the same mechanism, changed orders
are re-scheduled. The coordinator first retracts the old version from the corresponding
transporter and then announces the new version. In total, the system designed solves
the fulfillment problem.

The architecture also solves the failure-including fulfillment problem provided that

2. An order can be scheduled at any (discrete) point of time between start and finish time. A conflict arises if
the specific transportation intervals (including the arrival phase) overlap. The total set of possibilities for two
orders is their cross product.

10

published in Pre-Proceedings, MAAMAW-94, Odense, Denmark, 1994

breakdowns only occur at empty transporters.3 In this case, assigned orders are re-
tracted and put back into the pool of new orders, just the same way changed orders are
treated. Nevertheless, such events demand more timely rescheduling.

The demand for real-time behaviour has not yet been adequately met. In principle, real-
time behaviour can be achieved by managing the computational resources of the agents
appropriately. The computational time for a scheduling cycle mainly depends on the time
for a single analysis, on the total time until all analyses are returned, and on the local
scheduling. The time to find an assignment and any communication costs can be ne-
glected. To speed up this process, the number of orders announced must be reduced
to the most urgent ones (this reduces the number of combinations). Furthermore, the
coordinator must assign urgent orders as soon as it receives a positive analysis if the
system runs out of time to schedule these orders. Note that the transporters must ana-
lyze the orders in order to be able to guarantee their execution.

5 Implementation

In this section we will describe the implementation tool, the system performance, as well
as the experience gained during the implementation phase.

5.1 Multi-Agent Tools and a Test Run

The scenario depicted in section 2 and the architecture described in the previous section
have been implemented in the DASEDIS testbed for multi-agent systems [BS92]. The
main advantage of this testbed is the built-in agent architecture. This architecture repre-
sents the actoric, sensoric, communicative, intentional and cognitive aspects of an
agent in separate modules. Except for the module COGNITION, representing the cogni-
tive aspects, all other modules are simulated according to the application in question.
COGNITION itself is implemented as a knowledge-based system whose problem solv-
ing is based on scripts and cooperation protocols. A script encodes a stereotypical
course of actions which an agent may take in order to respond to its surrounding or to
achieve a goal. A cooperation protocol represents the possible flow of messages be-
tween two agents, abstracting from the low-level communication details. The structure
and algorithms for scripts and protocols are generic. For the application programmer it
remains to implement the knowledge of the agents in terms of scripts, resources neces-
sary to execute a script, means to acquire the resources (possibly via protocols), and
the relation of scripts to goals.

In the prototype implemented for the material flow scenario, the user creates agents for
machines, storage spaces, and transporters, after having defined an environment in-
cluding a graph and a production program; the coordinator is created automatically. All
agents can be configured according to their characteristics, i.e., for example, the ma-
chine type, the storage capacity, or the average velocity. Once the scenario is started,
the coordinator randomly computes new machine orders for a given time horizon. The
structure of these orders is taken from the production program that prescribes possible
order sequences for machine types. Machine orders are executed while new orders are
scheduled. From the machine orders the coordinator derives the corresponding trans-
port orders and announces them to the transporters. Then the assignment process
evolves as described in the previous section.

3. For transporters carrying material, additional orders that recover the lost material must be generated.

11

published in Pre-Proceedings, MAAMAW-94, Odense, Denmark, 1994

An example test run with five machines and five transporters produced the following re-
sults: A total number of 2406 transport orders was introduced to the system in 50 steps.
780 of these were revised later on. Of the remaining 1626 orders the system was able
to schedule 89 %. 9 % of orders were impossible to schedule (not enough transport ca-
pacity) and with the remaining 2 %, the system ran out of time.

5.2 Experience with a Multi-Agent Tool

The multi-agent part of the scheduling system could be readily implemented in the
DASEDIS testbed. As mentioned above, DASEDIS supplies a complete agent model
and high-level interaction protocols onto which the agents and the interactions of the
scheduling system could easily be mapped. In particular, it was only necessary to pro-
gram the knowledge base, i.e. scripts, resources, and execution conditions of scripts.
Services like communication (even protocols), concurrency, and execution were pro-
vided by DASEDIS.

On the other hand, multi-agent techniques did not cover all aspects of the scheduling
problem. Agents perform locally complex (cognitive) computations, such as analysing,
scheduling (both done by the transporter), and assigning orders (done by the coordina-
tor). These were implemented by classical conventional algorithms for which the pro-
gramming consumed a considerable amount of time. For these subproblems, it is rea-
sonable to employ other techniques, such as constraint-based reasoning or even
Operations Research methods. The order assignment, for example, can be formulated
as a clear mathematical problem.

Thus with the help of multi-agent techniques the scheduling problem was decomposed
into smaller problems which were solved with other techniques.

6 Conclusion

This paper presented a multi-agent approach to material flow scheduling. In the first part,
the material flow was described by a formal model. The scheduling problem to be solved
was identified as being dynamic and perturbed. It turned out that many computations are
local to a single transporter. On the other hand, global optimality criteria must be met.
This led us to a mixed architecture, i.e. a distributed system with centralized control.

The main idea was to leave the evaluation and the scheduling of new orders to each
transporter, whereas the assignment is in the responsibility of the coordinator. The coor-
dinator receives a global view of the scheduling process with the help of a condensed
result of the transporters’ analyses.

The design process and the implementation were based on multi-agent techniques and
tools. After identifying the need to distribute computation, a multi-agent approach pro-
vides an agent and a cooperation model that allowed the system to be designed at a
more abstract and conceptual level. Terms such as announce or assign fit perfectly well
into these models. Furthermore, multi-agent techniques supplied methods to coordinate
the scheduling process. On the implementational level many mechanisms, such as con-
currency or interaction protocols, were provided by the existing multi-agent environment
DASEDIS. Thus, our experience with applying multi-agent techniques to the material
flow problem can be summarized as follows: multi-agent techniques support the design
process and available tools facilitate rapid prototyping and experimentation.

12

published in Pre-Proceedings, MAAMAW-94, Odense, Denmark, 1994

Our experience has shown that dynamic and adaptive scheduling of transportation de-
mands a more ’reactive’ system, in the sense that schedules are computed more rapidly.
In many circumstances, for instance, new changes render the high communication effort
put into the analysis obsolete. In this case, it seems more reasonable to quickly compute
a preliminary schedule (for example, schedule one order at a time) and, if the situation
allows, improve the schedule afterwards.

Finally, it seems promising to combine machine and transportation scheduling. First of
all, the transportation problem cannot be isolated, since it is heavily dependent on ma-
chine scheduling. Additionally, a feasible machine schedule should in principle guaran-
tee a feasible transportation schedule. Consequently, coordination of both schedules
would result in better performance in comparison to the sequential scheduling of ma-
chine jobs and transportation, as is the case in current manufacturing control. Although
the overall system becomes more complex, an extension of the approach presented in
this paper would keep the complexity of the interrelations at a minimum.

Acknowledgement
I am indebted to Kurt Sundermeyer and Afsaneh Haddadi for their valuable comments
and discussions on the contents of this paper. I do really appreciate their efforts.

Bibliography
[BS92] B. Burmeister, K. Sundermeyer: ”Cooperative Problem-Solving Guided by Intentions
and Perception”, in: E. Werner, Y. Demazeau (eds.), Decentralized A.I. 3, North-Holland, 1992,
pp. 77-82

[BHS93] B. Burmeister, A. Haddadi, K. Sundermeyer: ”Generic Configurable Cooperation Pro-
tocols for Multi-Agent Systems”, Pre-Proc. MAAMAW–93, Neuchâtel, 1993

[BO92] J. Butler, H. Ohtsubo: ”ADDYMS: Architecture for Distributed Dynamic Manufacturing
Scheduling”, in: A. Famili, D.S. Nau, S.H. Kim (eds.), Artificial Intelligence Applications in
Manufacturing, AAAI Press/MIT Press, 1992, pp. 199–213

[DK93] W. Dilger, S. Kassel: ”Sich selbst organisierende Produktionsprozesse als Möglichkeit
zur flexiblen Fertigungssteuerung”, in J. Müller (ed.): ”Beiträge zum Gründungsworkshop der
Fachgruppe Verteilte Künstliche Intelligenz”, DFKI Document D–91–06, Saarbrücken, 1993

[OSH88] P.S. Ow, S.F. Smith, R. Howie: ”A Cooperative Scheduling System”, in M.D. Oliff (Ed.):
Expert System and Intelligent Manufacturing, 1988, pp. 43-56

[PLJ+86] H. Van Dyke Parunak, P.W. Lozo, R. Judd, B.W. Irish, J. Kindrick: ”A Distributed Heu-
ristic Strategy for Material Transportation”, Proc. of the Conference on Intelligent Systems and
Machines, Rochester, MI, pp. 305-310

[Smi80] R. Smith: ”The Contract Net Protocol: High-Level Communication and Control in a Dis-
tributed Problem Solver”, IEEE Transactions on Computers, C-29(12), December 1980, pp.
1104–1113

